Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Immunol ; 15: 1285278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562934

RESUMO

Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , Adulto , Humanos , Anticorpos , Vacinação , Epitopos , RNA Mensageiro/genética , SARS-CoV-2 , Vacinas de mRNA
2.
Viruses ; 15(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896806

RESUMO

The COVE trial randomized participants to receive two doses of mRNA-1273 vaccine or placebo on Days 1 and 29 (D1, D29). Anti-SARS-CoV-2 Spike IgG binding antibodies (bAbs), anti-receptor binding domain IgG bAbs, 50% inhibitory dilution neutralizing antibody (nAb) titers, and 80% inhibitory dilution nAb titers were measured at D29 and D57. We assessed these markers as correlates of protection (CoPs) against COVID-19 using stochastic interventional vaccine efficacy (SVE) analysis and principal surrogate (PS) analysis, frameworks not used in our previous COVE immune correlates analyses. By SVE analysis, hypothetical shifts of the D57 Spike IgG distribution from a geometric mean concentration (GMC) of 2737 binding antibody units (BAU)/mL (estimated vaccine efficacy (VE): 92.9% (95% CI: 91.7%, 93.9%)) to 274 BAU/mL or to 27,368 BAU/mL resulted in an overall estimated VE of 84.2% (79.0%, 88.1%) and 97.6% (97.4%, 97.7%), respectively. By binary marker PS analysis of Low and High subgroups (cut-point: 2094 BAU/mL), the ignorance interval (IGI) and estimated uncertainty interval (EUI) for VE were [85%, 90%] and (78%, 93%) for Low compared to [95%, 96%] and (92%, 97%) for High. By continuous marker PS analysis, the IGI and 95% EUI for VE at the 2.5th percentile (519.4 BAU/mL) vs. at the 97.5th percentile (9262.9 BAU/mL) of D57 Spike IgG concentration were [92.6%, 93.4%] and (89.2%, 95.7%) vs. [94.3%, 94.6%] and (89.7%, 97.0%). Results were similar for other D29 and D57 markers. Thus, the SVE and PS analyses additionally support all four markers at both time points as CoPs.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Imunoglobulina G , Eficácia de Vacinas
3.
Science ; 382(6666): eadj0070, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797027

RESUMO

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Assuntos
Antígenos Virais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacinas de mRNA/imunologia , Vacinação , Substituição de Aminoácidos
4.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075127

RESUMO

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Eficácia de Vacinas , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
5.
Open Forum Infect Dis ; 10(3): ofad069, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895286

RESUMO

Background: Hybrid immunity is associated with more durable protection against coronavirus disease 2019 (COVID-19). We describe the antibody responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vaccinated and unvaccinated individuals. Methods: The 55 vaccine arm COVID-19 cases diagnosed during the blinded phase of the Coronavirus Efficacy trial were matched with 55 placebo arm COVID-19 cases. Pseudovirus neutralizing antibody (nAb) activity to the ancestral strain and binding antibody (bAb) responses to nucleocapsid and spike antigens (ancestral and variants of concern [VOCs]) were assessed on disease day 1 (DD1) and 28 days later (DD29). Results: The primary analysis set was 46 vaccine cases and 49 placebo cases with COVID-19 at least 57 days post-first dose. For vaccine group cases, there was a 1.88-fold rise in ancestral antispike bAbs 1 month post-disease onset, although 47% had no increase. The vaccine-to-placebo geometric mean ratios for DD29 antispike and antinucleocapsid bAbs were 6.9 and 0.04, respectively. DD29 mean bAb levels were higher for vaccine vs placebo cases for all VOCs. DD1 nasal viral load positively correlated with bAb levels in the vaccine group. Conclusions: Following COVID-19, vaccinated participants had higher levels and greater breadth of antispike bAbs and higher nAb titers than unvaccinated participants. These were largely attributable to the primary immunization series.

6.
Lancet Infect Dis ; 23(5): 621-633, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682364

RESUMO

BACKGROUND: Developing a safe and immunogenic vaccine against Zika virus remains an unmet medical need. We did two phase 1 studies that evaluated the safety and immunogenicity of two mRNA-based Zika virus vaccines (mRNA-1325 and mRNA-1893) in adults. METHODS: Two randomised, placebo-controlled, dose-ranging, multicentre, phase 1 trials, one of mRNA-1325 (mRNA-1325 trial) and one of mRNA-1893 (mRNA-1893 trial), were done. For both studies, eligible participants were healthy adults (aged 18-49 years) who were flavivirus seronegative or flavivirus seropositive at baseline. Participants in the mRNA-1325 trial, which was done at three centres in the USA, were randomly assigned centrally (1:4), using a randomisation table, to the placebo group or one of three mRNA-1325 dose groups (10, 25, or 100 µg). All participants received two doses. The mRNA-1325 vaccine encoded the premembrane and envelope E structural proteins (prME) from a Micronesia 2007 Zika virus isolate. Participants in the mRNA-1893 trial, which was done at three centres in the USA and one centre in Puerto Rico, were randomly assigned (1:4) to the placebo group or one of four mRNA-1893 dose groups (10, 30, 100, or 250 µg) using centralised interactive response technology. All participants in the mRNA-1893 trial received dose one on day 1 and then dose two on day 29. The mRNA-1893 vaccine encoded the prME from the RIO-U1 Zika virus isolate. Safety was the primary outcome of each study, which was evaluated in the respective safety populations (mRNA-1325 trial: participants who received at least one dose and provided safety data; mRNA-1893 trial: participants who received at least one dose) and the solicited safety population (mRNA-1893 trial only: received at least 1 dose and contributed solicited adverse reaction data). Endpoints in both trials included solicited adverse reactions within 7 days after vaccination and unsolicited adverse events within 28 days after vaccination. The secondary outcome of both trials was immunogenicity assessed by Zika virus-specific neutralising antibodies (nAbs) in the per-protocol populations in either trial (participants with no major protocol deviations received full dose[s] of assigned dose level within the acceptable time window, had samples drawn within acceptable time window, and had prevaccination and corresponding post-vaccination serum samples for testing). These were descriptive studies, with no formal hypothesis testing in either trial. Both trials are registered with ClinicalTrials.gov, NCT03014089 (mRNA-1325 trial) and NCT04064905 (mRNA-1893 trial). FINDINGS: The mRNA-1325 trial was done from Dec 14, 2016, to Aug 16, 2018. 90 participants were enrolled: 53 (59%) participants were women and 37 (41%) were men; 84 (93%) were White; and 74 (82%) were not Hispanic or Latino. All three dose levels of mRNA-1325 (10, 25, and 100 µg) were generally well tolerated, but the vaccine elicited poor Zika virus-specific nAb responses. At 28 days after dose two, geometric mean titres (GMTs) were highest for mRNA-1325 10 µg (10·3 [95% CI 5·9-18·2]). The mRNA-1893 trial was done from July 23, 2019, to March 22, 2021. 120 participants (70 [58%] women and 50 [42%] men) were enrolled, most participants were White (89 [74%]), and not Hispanic or Latino (91 [76%]). In the mRNA-1893 trial, solicited adverse reactions in participants who received a vaccine were mostly grade 1 or 2 and occurred more frequently at higher dose levels and after dose two. No participants withdrew due to an unsolicited treatment-emergent adverse event and most of these events were not treatment related. On day 57, all evaluated mRNA-1893 dose levels induced robust Zika virus-specific nAb responses, independent of flavivirus serostatus, that persisted until month 13. At day 57 in participants who were flavivirus seronegative, plaque reduction neutralisation titre test nAb GMTs were highest for mRNA-1893 100 µg (454·2 [330·0-619·6]); in participants who were flavivirus seropositive, GMTs were highest for mRNA-1893 10 µg (224·1 [43·5-1153·5]) and mRNA-1893 100 µg (190·5 [19·2-1887·2]). INTERPRETATION: These findings support the continued development of mRNA-1893 against Zika virus, which was well tolerated at all evaluated dose levels and induced strong Zika virus-specific serum nAb responses after two doses, regardless of baseline flavivirus serostatus. FUNDING: Biomedical Advanced Research and Development Authority and Moderna.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Masculino , Adulto , Humanos , Feminino , Zika virus/genética , Método Duplo-Cego , Vacinação , Porto Rico , Imunogenicidade da Vacina , Infecção por Zika virus/prevenção & controle , Anticorpos Antivirais
7.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35860221

RESUMO

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

8.
Clin Infect Dis ; 76(2): 271-280, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36130187

RESUMO

BACKGROUND: The reactogenicity and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines are well studied. Little is known regarding the relationship between immunogenicity and reactogenicity of COVID-19 vaccines. METHODS: This study assessed the association between immunogenicity and reactogenicity after 2 mRNA-1273 (100 µg) injections in 1671 total adolescent and adult participants (≥12 years) from the primary immunogenicity sets of the blinded periods of the Coronavirus Efficacy (COVE) and TeenCOVE trials. Associations between immunogenicity through day 57 and solicited adverse reactions (ARs) after the first and second injections of mRNA-1273 were evaluated among participants with and without solicited ARs using linear mixed-effects models. RESULTS: mRNA-1273 reactogenicity in this combined analysis set was similar to that reported for these trials. The vaccine elicited high neutralizing antibody (nAb) geometric mean titers (GMTs) in evaluable participants. GMTs at day 57 were significantly higher in participants who experienced solicited systemic ARs after the second injection (1227.2 [1164.4-1293.5]) than those who did not (980.1 [886.8-1083.2], P = .001) and were associated with fever, chills, headache, fatigue, myalgia, and arthralgia. Significant associations with local ARs were not found. CONCLUSIONS: These data show an association of systemic ARs with increased nAb titers following a second mRNA-1273 injection. While these data indicate systemic ARs are associated with increased antibody titers, high nAb titers were observed in participants after both injections, consistent with the immunogenicity and efficacy in these trials. These results add to the body of evidence regarding the relationship of immunogenicity and reactogenicity and can contribute toward the design of future mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Adolescente , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais
9.
Infect Dis Ther ; 12(1): 177-191, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376733

RESUMO

INTRODUCTION: There is a need for automated, high-throughput assays to quantify immune response after SARS-CoV-2 vaccination. This study assessed the combined utility of the Elecsys® Anti-SARS-CoV-2 S (ACOV2S) and the Elecsys Anti-SARS-CoV-2 (ACOV2N) assays using samples from the mRNA-1273 (Spikevax™) phase 2 trial (NCT04405076). METHODS: Samples from 593 healthy participants in two age cohorts (18-54 and ≥ 55 years), who received two injections with placebo (n = 198) or mRNA-1273 (50 µg [n = 197] or 100 µg [n = 198]), were collected at days 1 (first vaccination), 15, 29 (second vaccination), 43, and 57. ACOV2S results were used to assess humoral response to vaccination in different subgroups and were compared to live virus microneutralization assay. Samples from patients with either previous or concomitant infection (identified per ACOV2N) were analyzed separately. RESULTS: Receptor-binding domain-specific antibodies were readily detectable by ACOV2S for the vast majority of participants (174/189, 92.1% [50 µg dose] and 178/192, 92.7% [100 µg dose]) at the first post-vaccination assessment, with non-converters predominantly older in age. Seroconversion for all participants was observed at day 29 (before the second vaccine dose). Two weeks after the first dose, geometric mean concentration (GMC) of antibody levels was 1.37-fold higher in the 100 versus 50 µg group (p = 0.0098), reducing to 1.09-fold 2 weeks after the second dose (p = 0.0539, n.s.). In both dose groups, a more pronounced response was observed in the younger versus older age group on day 15 (50 µg, 2.49-fold [p < 0.0001]; 100 µg, 3.94-fold [p < 0.0001] higher GMC, respectively), and day 29 (1.93-fold, p = 0.0002, and 2.44-fold, p < 0.0001). Eight subjects had previous or concomitant SARS-CoV-2 infection; vaccination boosted their humoral response to very high ACOV2S results compared to infection-naïve recipients. ACOV2S strongly correlated with microneutralization (Pearson's r = 0.779; p < 0.0001), including good qualitative agreement. CONCLUSION: These results confirmed that ACOV2S is a highly valuable assay for tracking vaccine-related immune responses. Combined application with ACOV2N enables monitoring for breakthrough infection or stratification of previous natively infected individuals. The adaptive measuring range and high resolution of ACOV2S allow for early identification of seroconversion and resolution of very high titers and longitudinal differences between subgroups. Additionally, good correlation with live virus microneutralization suggests that ACOV2S is a reliable estimate of neutralization capacity in routine diagnostic settings.

10.
Nat Med ; 28(11): 2388-2397, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202997

RESUMO

Updated immunization strategies are needed to address multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here we report interim results from an ongoing, open-label phase 2/3 trial evaluating the safety and immunogenicity of the bivalent Coronavirus Disease 2019 (COVID-19) vaccine candidate mRNA-1273.211, which contains equal mRNA amounts encoding the ancestral SARS-CoV-2 and Beta variant spike proteins, as 50-µg (n = 300) and 100-µg (n = 595) first booster doses administered approximately 8.7-9.7 months after the mRNA-1273 primary vaccine series ( NCT04927065 ). The primary objectives were to evaluate the safety and reactogenicity of mRNA-1273.211 and to demonstrate non-inferior antibody responses compared to the mRNA-1273 100-µg primary series. Additionally, a pre-specified immunogenicity objective was to demonstrate superior antibody responses compared to the previously authorized mRNA-1273 50-µg booster. The mRNA-1273.211 booster doses (50-µg or 100-µg) 28 days after immunization elicited higher neutralizing antibody responses against the ancestral SARS-CoV-2 and Beta variant than those elicited 28 days after the second mRNA­1273 dose of the primary series ( NCT04470427 ). Antibody responses 28 days and 180 days after the 50-µg mRNA-1273.211 booster dose were also higher than those after a 50-µg mRNA-1273 booster dose ( NCT04405076 ) against the ancestral SARS-CoV-2 and Beta, Omicron BA.1 and Delta variants, and all pre-specified immunogenicity objectives were met. The safety and reactogenicity profile of the bivalent mRNA-1273.211 booster (50-µg) was similar to the booster dose of mRNA-1273 (50-µg). Immunization with the primary series does not set a ceiling to the neutralizing antibody response, and a booster dose of the bivalent vaccine elicits a robust response with titers that are likely to be protective against COVID-19. These results indicate that bivalent booster vaccines can induce potent, durable and broad antibody responses against multiple variants, providing a new tool in response to emerging variants.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Combinadas , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
11.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260859

RESUMO

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Imunogenicidade da Vacina , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Imunogenicidade da Vacina/imunologia , Eficácia de Vacinas , Resultado do Tratamento , Adolescente , Adulto
12.
Res Sq ; 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35547849

RESUMO

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for a third dose of vaccine. We evaluated early safety and immunogenicity after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, and Delta variants that were similar or greater than peak responses after the second dose. Spike-specific CD4+ and CD8+ T cells increased to similar levels as after the second dose. A third mRNA vaccination was well tolerated and generated robust humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1).

13.
N Engl J Med ; 386(21): 2011-2023, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544369

RESUMO

BACKGROUND: Vaccination of children to prevent coronavirus disease 2019 (Covid-19) is an urgent public health need. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in children 6 to 11 years of age are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled expansion evaluation of the selected dose. In part 2, we randomly assigned children (6 to 11 years of age) in a 3:1 ratio to receive two injections of mRNA-1273 (50 µg each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of the vaccine in children and the noninferiority of the immune response in these children to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives included determination of the incidences of confirmed Covid-19 and severe acute respiratory syndrome coronavirus 2 infection, regardless of symptoms. Interim analysis results are reported. RESULTS: In part 1 of the trial, 751 children received 50-µg or 100-µg injections of the mRNA-1273 vaccine, and on the basis of safety and immunogenicity results, the 50-µg dose level was selected for part 2. In part 2 of the trial, 4016 children were randomly assigned to receive two injections of mRNA-1273 (50 µg each) or placebo and were followed for a median of 82 days (interquartile range, 14 to 94) after the first injection. This dose level was associated with mainly low-grade, transient adverse events, most commonly injection-site pain, headache, and fatigue. No vaccine-related serious adverse events, multisystem inflammatory syndrome in children, myocarditis, or pericarditis were reported as of the data-cutoff date. One month after the second injection (day 57), the neutralizing antibody titer in children who received mRNA-1273 at a 50-µg level was 1610 (95% confidence interval [CI], 1457 to 1780), as compared with 1300 (95% CI, 1171 to 1443) at the 100-µg level in young adults, with serologic responses in at least 99.0% of the participants in both age groups, findings that met the prespecified noninferiority success criterion. Estimated vaccine efficacy was 88.0% (95% CI, 70.0 to 95.8) against Covid-19 occurring 14 days or more after the first injection, at a time when B.1.617.2 (delta) was the dominant circulating variant. CONCLUSIONS: Two 50-µg doses of the mRNA-1273 vaccine were found to be safe and effective in inducing immune responses and preventing Covid-19 in children 6 to 11 years of age; these responses were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV/efeitos adversos , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/complicações , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Criança , Método Duplo-Cego , Humanos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Eficácia de Vacinas , Adulto Jovem
14.
J Infect Dis ; 226(10): 1731-1742, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-35535503

RESUMO

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunogenicidade da Vacina , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus
16.
medRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291289

RESUMO

Importance: Due to the emergence of highly transmissible SARS-CoV-2 variants, evaluation of boosters is needed. Objectives: Evaluate safety and immunogenicity of 100-µg of mRNA-1273 booster dose in adults. Design: Open-label, Phase 2/3 study. Setting: Multicenter study at 8 sites in the U.S. Participants: The mRNA-1273 100-µg booster was administered to adults who previously received a two dose primary series of 100-µg mRNA-1273 in the phase 3 Coronavirus Efficacy (COVE) trial, at least 6 months earlier. Intervention: Lipid nanoparticle containing 100-µg of mRNA encoding the spike glycoprotein of SARS-CoV-2 (Wuhan-HU-1). Main Outcomes and Measures: Solicited local and systemic adverse reactions, and unsolicited adverse events were collected after vaccination. Primary immunogenicity objectives were to demonstrate non-inferiority of the neutralizing antibody (nAb) response against SARS-CoV-2 based on the geometric mean titer (GMTs) and the seroresponse rates (SRRs) (booster dose vs. primary series in a historical control group). nAbs against SARS-CoV-2 variants were also evaluated. Results: The 100-µg booster dose had a greater incidence of local and systemic adverse reactions compared to the second dose of mRNA-1273 as well as the 50-µg mRNA-1273 booster in separate studies. The geometric mean titers (GMTs; 95% CI) of SARS-CoV-2 nAbs against the ancestral SARS-CoV-2 at 28 days after the 100-µg booster dose were 4039.5 (3592.7,4541.8) and 1132.0 (1046.7,1224.2) at 28 days after the second dose in the historical control group [GMT ratio=3.6 (3.1,4.2)]. SRRs (95% CI) were 100% (98.6,100) at 28 days after the booster and 98.1% (96.7,99.1) 28 days after the second dose in the historical control group [percentage difference=1.9% (0.4,3.3)]. The GMT ratio (GMR) and SRR difference for the booster as compared to the primary series met the pre-specified non-inferiority criteria. Delta-specific nAbs also increased (GMT fold-rise=233.3) after the 100-µg booster of mRNA-1273. Conclusions and Relevance: The 100-µg mRNA-1273 booster induced a robust neutralizing antibody response against SARS-CoV-2, and reactogenicity was higher with the 100-µg booster dose compared to the authorized booster dose level in adults (50-µg). mRNA-1273 100-µg booster dose can be considered when eliciting an antibody response might be challenging such as in moderately or severely immunocompromised hosts. Trial Registration: NCT04927065.

17.
Nat Med ; 28(5): 1042-1049, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35241844

RESUMO

Rising breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals have raised concerns for the need for a booster vaccine dose to combat waning antibody levels and new variants. Here we report the results of the open-label, non-randomized part B of a phase 2 trial in which we evaluated the safety and immunogenicity of a booster injection of 50 µg of the coronavirus disease 2019 (COVID-19) vaccine mRNA-1273 in 344 adult participants immunized 6-8 months earlier with a primary series of two doses of 50 µg or 100 µg of mRNA-1273 ( NCT04405076 ). Neutralizing antibody (nAb) titers against wild-type SARS-CoV-2 at 1 month after the booster were 1.7-fold (95% confidence interval (CI): 1.5, 1.9) higher than those at 28 days after the second injection of the primary series, which met the pre-specified non-inferiority criterion (primary immunogenicity objective) and might indicate a memory B cell response. The nAb titers against the Delta variant (B.1.617.2) (exploratory objective) at 1 month after the booster were 2.1-fold (95% CI: 1.8, 2.4) higher than those at 28 days after the second injection of the primary series. The seroresponse rate (95% CI (four-fold rise from baseline)) was 100% (98.7, 100.0) at 28 days after the booster compared to 98.3% (96.0, 99.4) after the primary series. The higher antibody titers at 28 days after the booster dose compared to 28 days after the second dose in the phase 3 COVE study were also observed in two assays for anti-spike IgG antibody measured by ELISA and by Meso Scale Discovery (MSD) Multiplex. The frequency of solicited local and systemic adverse reactions after the booster dose was similar to that after the second dose in the primary two-dose series of mRNA-1273 (50 µg or 100 µg); no new signals were observed in the unsolicited adverse events; and no serious adverse events were reported in the 1-month follow-up period. These results show that a booster injection of mRNA-1273 more than 6 months after completing the primary two-dose series is safe and elicited nAb titers that were statistically significantly higher than the peak titers detected after the primary vaccination series, suggesting that a booster dose of mRNA-1273 might result in increased vaccine effectiveness against infection and disease caused by SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunidade , Imunogenicidade da Vacina
18.
medRxiv ; 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35118475

RESUMO

Background: The highly transmissible severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron variant is a global concern. This study assessed the neutralization activity of two-dose regimens of mRNA-1273 vaccination against Omicron in adults, adolescents and children. Methods: Neutralizing activity against the Omicron variant was evaluated in serum samples from adults (≥18 years) in the phase 3, Coronavirus Efficacy (COVE) and from adolescents (12-17 years) in the TeenCOVE trials following a two-dose regimen of 100 µg mRNA-1273 and from children (6-<12 years) in the KidCOVE trial administered two doses of 50 µg mRNA-1273. Neutralizing antibody geometric mean ID50 titers (GMT) were measured using a lentivirus-based pseudovirus neutralizing assay at day 1 and 4 weeks (day 57) following the second mRNA-1273 dose, compared with wild-type (D614G). Results: At 4 weeks following a second dose of mRNA-1273 (100 µg), the GMT was reduced 28.8-fold compared with D614G in adults (≥18 years). In adolescents (12-17 years), the GMT was 11.8-fold lower than D614G, 4 weeks after a second dose of mRNA-1273 (100 µg), and compared with adults, were 1.5- and 3.8-fold higher for D614G and the Omicron variant, respectively. In children (6-<12 years), 4 weeks post-second dose of 50 µg mRNA-1273, Omicron GMTs were reduced 22.1-fold versus D614G and were 2.0-fold higher for D614G and 2.5-fold higher for Omicron compared with adults. Conclusions: A two-dose regimen of 100 µg mRNA-1273 in adolescents and of 50 µg in children elicited neutralization responses against the Omicron variant that were reduced compared with the wild-type D614G, and numerically higher than those in adults.

19.
Nat Med ; 28(4): 823-830, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145311

RESUMO

The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...